BEGIN {
sends=0;
recvs=0;
routing_packets=0.0;
droppedBytes=0;
droppedPackets=0;
highest_packet_id =0;
sum=0;
recvnum=0;
}
{
time = $3;
packet_id = $41;
# CALCULATE PACKET DELIVERY FRACTION
if (( $1 == "s") && ( $35 == "cbr" ) && ( $19=="AGT" )) { sends++; }
if (( $1 == "r") && ( $35 == "cbr" ) && ( $19=="AGT" )) { recvs++; }
# CALCULATE DELAY
if ( start_time[packet_id] == 0 ) start_time[packet_id] = time;
if (( $1 == "r") && ( $35 == "cbr" ) && ( $19=="AGT" )) { end_time[packet_id] = time; }
else { end_time[packet_id] = -1; }
# CALCULATE TOTAL AODV OVERHEAD
if (($1 == "s" || $1 == "f") && $19 == "RTR" && ($35 =="AODV" ||$35 =="AOMDV")) routing_packets++;
# DROPPED AODV PACKETS
if (( $1 == "d" ) && ( $35 == "cbr" ) && ( $3 > 0 ))
{
droppedBytes=droppedBytes+$37;
droppedPackets=droppedPackets+1;
}
#find the number of packets in the simulation
if (packet_id > highest_packet_id)
highest_packet_id = packet_id;
}
END {
for ( i in end_time )
{
start = start_time[i];
end = end_time[i];
packet_duration = end - start;
if ( packet_duration > 0 )
{ sum += packet_duration;
recvnum++;
}
}
delay=sum/recvnum;
NRL = routing_packets/recvs; #normalized routing load
PDF = (recvs/sends)*100; #packet delivery ratio[fraction]
printf("Send Packets = %.2f\n",sends);
printf("Received Packets = %.2f\n",recvs);
printf("Roting Packets = %.2f\n",routing_packets++);
printf("Packet Delivery Function = %.2f\n",PDF);
printf("Normalised Routing Load = %.2f\n",NRL);
printf("Average end to end delay(ms)= %.2f\n",delay*1000);
printf("No. of dropped data (packets) = %d\n",droppedPackets);
printf("No. of dropped data (bytes) = %d\n",droppedBytes);
}
No comments:
Post a Comment